Tall Buildings: Prevention at the Design Stage – The view of an Occupational Safety and Health Expert

Carl Heyrman Nicosia, Cyprus January 14, 2017

Where I come from

Antwerp

Tall buildings of Antwerp

Cathedral

Year: 1352-1521

Height: 123 m

Tall buildings of Antwerp

'Tower building'

- Year 1929-1932
- Height: 87,5m
- Heighest skyscraper of Europe in 1932

Tall buildings of Antwerp

http://skyscraperpage.com/diagrams/?

Tall buildings ... New buildings?

Empire State Building NY

- Ready in 1931
- 20 months from start to finish
- 3400 workers simultaneously
- At least 5 fatal accidents

Design and prevention

Construction life cycle

- Design stage
- Procurement stage
- Construction stage
- Use and maintenance stage
- Demolition stage

Direct parties concerned

- Client Owner
- Designer
- Contractor
- Construction worker
- Site manager
- Supplier
- Safety expert
- • •

Role and impact of the designer

- Over 60%^(*) of fatal accidents could have been avoided by taking action before opening the construction site
- Article 9 of the 167th ILO Convention:
 The designer must consider safety and health protection for construction workers
- EU 92/57
- The decisions taken during the initial cycles are the most strategic

Management of Health and Safety: Fields of action

Example: pre-fabrication

 Pre-fabrication and pre-assembly will likely increase worker safety

 Pre-fabrication reduces work at height

Recommendation 1

Be aware of the difference you can make as a designer regarding SH

Our old friends

Sir Isaac Newton (1643–1727)

Newton's first law: law of inertia

The first law can be stated mathematically when the mass is a non-zero constant, as,

$$SUM(F)=0 <=> dv/dt=0$$

Consequently

- An object that is at rest will stay at rest unless a force acts upon it
- An object that is in motion will not change its velocity unless a force acts upon it

Newton's second law

F= m.dv/dt=m.a

Derived

G=m.g

Newton

 $(kg.m/s^2)$

Where

- g = 9,81m/s²= acceleration of free fall
- m = mass of the body
- G = Weight of the body

Newton's third law

To every action there is always opposed an equal reaction

or

 The mutual actions of two bodies upon each other are always equal, and directed to contrary parts

Potential Energy

Kinetic Energy

$$E_k = 1/2 \text{ m} \text{ V}^2$$

$$Joule$$
(kg.m/s².m= N.m)

Law of conservation of mechanical Energy

Impact on human head

University Bern (CH)

- 100J: Fracture of human scull
- 200J: Fatal

Impact of a concrete block

Impact of fall of a hammer of 450g

Impact of fall of a bold of 30g

Recommendation 2

Stop dropped objects

Preventing dropped objects

Safety nets

http://combisafe.com/EN/products/fall-safety/safety-net-fan/safety-net-fan-high-rise

Safety Net Fan High Rise

Make an enquiry

Request a site visit

Share on:

Art No. (Made to Order Only)

The Safety Net Fan High Rise has been designed specifically for the High Rise construction industry and can withstand winds of up to 100mph

It utilises the Class B1 net and comes with 60 x 60mm mesh and 20mm x 20mm debris net as been proven to arrest falls of up to 100kg from a height of 6m, conforming to EN1263-1&2 (Safety Nets).

The elasticity of the net, together with a slight deformation of the frame, ensures that the impact of a fall is absorbed, considerably decreasing the risk of injury or objects falling to street level. Items do not bounce out or shatter which can harm people and property below. B1 nets that comply with EN1263-1&2 are significantly strenger than conventional methods of protection, as well as being energy absorbent, absorbing up to 4.4 kJ.

The combined layer net is able to catch considerably smaller particles of debris therefore protecting property and people at ground level. Fans can be folded in to retrieve fallen objects.

- Designed to withstand wind gusts of up to 100mph
- Made for catching material
- Compliments high rise construction
- 60mm x 60mm net overlay with 20 mm x 20mm* debris netting.
- 6m long by 4.6m wide
- High energy absorbing nets and frame assembly
- Folds up against the facade for easy crane access below or as a safety precaution during bad weather

*on the main inner section only, not on the kicker 'Up section'

NOTE: This product is a special solution, made to order only.

The force of nature

Wind and structural design

- Structural integrity under ultimate loads
- Deflections under service loads
- Building motion and occupant comfort
- Uncertainties in building structural properties like stiffness and damping
- Uncertainties in wind loading
- Uncertainties in wind climate
- Fluid dynamics

Relationship between height and the importance of wind loads

Wind flow between buildings

Wind flow over tall buildings

Pressure

Aerodynamic buildings

Scale wind tunnel tests

Source: Peter A. Irwin RWDI

What about scaffolds?

From: Worksafe Victoria (Australia)

eurconsult

Assess the impact of wind also on scaffolds, platforms and temporary structures

Make sure that...

- All scaffolds in wind exposed locations are designed to withstand likely environmental loads, including wind and rain.
- The design of a sheeted scaffold in any windexposed location is approved by a competent person.
- Where buildings or structures are being demolished, any adjacent scaffold is also progressively dismantled or, when it is still required, that it has been appropriately strengthened to withstand any increased wind loads.
- Planks on high scaffolds in wind-exposed locations are properly fixed against uplift.

When different people are working together

Culture and communication

Cultural diversity

Same gestures... different meanings

Languages and communication

Worldwide

- 7.000 official languages
- 20.000 dialects

Top 25 World Languages

- Chinese, Mandarin
- Spanish
- □ English
- ■Hindi
- Bengali
- □Portuguese
- Japanese
- ■German, Standard
- Javanese
- Chinese, Wu
- ■Vietnamese
- Marathi
- Korean
- Western Panjabi
- Chinese, Yue
- Egyptian Spoken Arabic
- Turkish
- Chinese, Min Nan
- Gujarati
- Rest of World

eurconsult

Miscommunication leads to mistakes

Miscommunicatie zorgt voor bouwfouten

De meeste constructiefouten worden gemaakt door slechte samenwerking en miscommunicatie. Dat blijkt uit grootschalig onderzoek onder bouwvakkers, door de TU Delft.

Miscommunication can also lead to accidents

Fatal accidents in Construction in the US (CPWR)

Migrant workers (Hispanic)	Proportion of fatal accidents	Year
6,5%	11,2%	1992
15%	23,5%	2000

Possible explanations

- • •
- Less knowledge of English
- ...

Story of the Belgian Construction Industry in 2014

- 151.061 blue collar workers on a Belgian pay roll
- 87,792 foreign workers

Accidents in the Belgian construction industry (Frequency Index)

What about the accident figures for foreign workers?

Observations made by Navb-Cnac

- Communication problems
 - Some workers do not speak the national languages, nor English
 - Therefore, safety instructions are not understood, Belgian regulations are not known
 - Communication with Belgian workers and site managers is complicated
- The taller the construction site, the more diverse it is

Recommendation 4

Be aware of diversity

Managerial aspects

Management of Health and Safety: Fields of action

Referential book ILO

PrefaceV				
1.	General	provisions	1	
	1.1.	Objective	1	
	1.2.	Application		
	1.3.	Definitions	2	
2.	General	duties	5	
	2.1.	General duties of competent authorities	5	
	2.2.	General duties of employers		
	2.3.	General duties of self-employed persons	7	
	2.4.	Co-operation and co-ordination.	7	
	2.5.	General rights and duties of workers	8	
	2.6.	General duties of designers, engineers, architects	9	
	2.7.	General duties of clients		
3.	Safety o	f workplaces	10	
٥.	3.1.	General provisions	10	
	3.2.	Means of access and egress		
	3.3.	Housekeeping		
	3.4.	Precautions against the fall of materials and persons, and		
		collapse of structures	10	
	3.5.	Prevention of unauthorised entry		
	3.6.	Fire prevention and fire fighting	11	
	3.7.	Lighting	13	
4.	Scaffold	s and ladders	14	
٦.	4.1.	General provisions		
	4.2.	Materials		
	4.3.	Design and construction		
	4.4.	Inspection and maintenance		
	4.5.	Lifting appliances on scaffolds		
	4.6.	Prefabricated scaffolds	17	
	4.7.	Use of scaffolds	17	
	4.8.	Suspended scaffolds	18	
5.	Liftings	appliances and gear	19	
٥.	5.1.	General provisions.	19	
	5.2.	Hoists		
	5.3.	Derricks Stiff-leg derricks		
	5.4.	Gin poles.		
	5.5.	Tower cranes		
	5.6.	Lifting ropes		
6.	Tuoneno	art south maxing and matavials handling agricument	20	
0.	6.1.	ort, earth-moving and materials-handling equipment General provisions	29	
	6.2.	Power shovels, excavators	30	
	6.3.	Bulldozers		
	6.4.	Scrapers		
	0.4.	Scrapers	32	

Safety and health in construction

	6.5.	Mobile asphalt layers and finishers	. 3
	6.6.	Pavers	3
	6.7.	Road rollers	3.
7.	Plant, m	achinery, equipment and hand tools	. 3
	7.1.	General provisions	
	7.2.	Hand tools	
	7.3.	Pneumatic tools	
	7.4.	Cartridge-operated tools	
	7.5.	Electrical tools	
	7.6.	Woodworking machines	. 3
	7.7.	Engines	
	7.8.	Silos	. 31
	7.9.	Concrete work equipment	. 39
	7.10.	Pressure plant	. 40
	7.11.	Conveyors	4
	7.12.	Crusher plants	4
	7.13.	Power generators	4
8.	Work of	heights including roof work	4
٥.	8.1.	General provisions	
	8.2.	Roof work	
	8.3.	Work on tall chimneys	
9.		ions, shafts, earthworks, underground works and tunnels	
	9.1.	General provisions	
	9.2.	Excavations	
	9.3.	Underground construction	
	9.3.1.	General provisions	
	9.3.2.	Shaft sinking	
	9.3.3. 9.3.4.	Ventilation	
		Fire protection	
	9.3.5. 9.3.6.	Electricity	
	9.3.6.	Underground lighting	
	9.5.	Transport, storage and handling of explosives	
	9.5.	Blasting	
	9.7.	Haulage	
	9.7.	Dust control	
	9.9.	Underground pipelines	
10.		ams and caissons and work in compressed air	
	10.1.	General provisions	
	10.2.	Work in cofferdams and caissons	
	10.3.	Work in tunnels in compressed air	. 59
11.	Structur	al frames, formwork and concrete work	6
	11.1.	General provisions	
	11.2.	Erection and dismantling of steel and prefabricated structures	
	11.3.	Cast-in-situ concrete structures	
	11.4.	Provision of temporary floors	6
	11.5.	Formwork	6:

12.1. General provisions 67 12.3. Operation of pile-driving equipment 68 12.5. Sheet piling 69 13.1. General provisions 70 14.1. General provisions 73 14.6. Use and removal of asbestos and materials and articles 15.1. General provisions 77 16.1. General provisions 80 16.3. Disposal of explosives 82 17.2. Occupational health services 83 17.4. Hazardous substances 85 17.5. Dangerous atmospheres 86 Biological agents 88 17.10. Additional provisions 89 18.1. General provisions 90 19.1. General provisions 92 19.2. Drinking water 92

 19.3. Sanitary facilities
 93

 19.4. Washing facilities
 93

 19.5. Cloakrooms
 93

Safety and health in construction

Contents

	19.6.	Facilities for food and drink	93
	19.7.	Shelters	94
	19.8.	Living accommodation	94
20.	Informa	tion and training	95
21.	Reportin	ng of accidents and diseases	97
Ap	pendix: B	sibliography	98
Ind	ex		103

Recommendation 5

Implement a strict management system for Health and Safety through all stages of the construction project

